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NASA R&D in Formal Methods

• NASA Langley Research Center (LARC) - Safety 
Critical Avionics Branch

• NASA Ames Research Center(ARC)– Robust 
Software Engineering Group

• Jet Propulsion Laboratory (JPL/FFRDC) –
Laboratory for Reliable Software

• NASA Marshall Spaceflight Center, NASA Kennedy 
Spaceflight Center, and NASA Johnson Spaceflight 
Center have efforts applying model checking to 
small projects, but I don’t discuss these
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Focus of Talk

• LaRC efforts in formal methods will be focus of 
today’s talk

• A brief overview of JPL efforts that may be of 
interest to SDP 

• ARC’s work was presented at recent SDP meeting 
so I will mainly highlight collaborative efforts

• LaRC has historically targeted unltra-reliable safety-
critical systems in aerospace
– Heavily regulated

– Very long development times

– Safety trumps cost/time to deliver
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NASA Langley

• LaRC created in 1917 as the first National Advisory 
Committee for Aeronautics (NACA) research facility
– Located in Hampton, Virginia

• LaRC became a NASA lab in 1958 
– The Mercury program begin at LaRC

• Research areas of concentrations: Aeronautics, 
Atmospheric Sciences, and Exploration

• Formal methods research at LaRC is conducted in 
the Safety-Critical Avionics Systems Brach of the 
Research and Technology Directorate (RTD)
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Ultra-Reliability is Hard 

We are very good at building complex software systems that work 95% 
of the time---but, we do not know how to build complex software 
systems that are ultra-reliably safe. 

What then has saved us in the past?
–minimal amount of software that is safety-critical
–simple designs
–enormously expensive verification and certification processes
– backups that are not software, e.g.:

° hardware interlocks
° human intervention

0

747-200
757/767

747-400

777All sectors of 
aerospace are 
increasingly relying 
on software to 
perform safety-
critical functions

Size and
Complexity



Branch Mission

Safety-Criticial Avionics Systems:

Research, create, and demonstrate new methodologies and tools for 
designing, verifying, validating, and assuring high confidence 
software-intensive systems to improve safety, reliability, and capacity 
in mission- or life-critical aerospace systems



Analyzing Designs and Algorithms

• Avionics code is very conservative and testing far exceeds almost 
any other software 

– Buffer overflows are not the problem here

• Problems often stem from the physically possible, but logically 
unanticipated 

– How does software respond to unanticipated hardware failures

• LaRC has traditionally focused on design and algorithm analysis 
rather than code

– More code analysis recently

• Many models involve continuous math

– Cannot just abstract this away 

– Interactive theorem proving is often the only formal tool we can 
use

• SMT solvers and model checkers used when appropriate

• Developing new decision procedures for nonlinear arithmetic
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LaRC Early Pioneer 

• Historically LaRC focus has been on formal 
methods for analyzing avionics

• Safety-critical distributed systems

• In late 1970s there was a contract in place with SRI 
International and Bendix to build a fault-tolerant 
computer named SIFT: Software Implemented Fault 
Tolerance

• And a second contract with SRI to formally prove 
the SIFT operating system correct
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SIFT Computer

• Reliability goal: 10-9

• 6 processors

• Fully-connected topology

• Fault-tolerant clock 
synchronization

• Byzantine agreement 
algorithm

• Delivered to NASA Langley 
in 1981 

• Contributers include: Jack 

Goldberg, Chuck Weinstock, Karl 
Levitt, Michael Melliar-Smith, Richard 
Schwartz, Rob Shostak, Bob Boyer, J. 
Moore, John Wensley, Leslie Lamport



Landmark Accomplishments

• Although the verification of the entire OS was overly 
ambitious 

• Some landmark accomplishments had been made:
– Fault-tolerant clock synchronization

– Byzantine Agreement

– An insightful problem decomposition:

• Prob[enough hardware] via Markov analysis

• Enough hardware  good answers

• Hierarchical decomposition
– Shostak decision procedures  EHDM prover  PVS



Later Recognized Successes:

• Rockwell Collins/SRI Verification of AAMP5/AAMP-FV Ps
(Srivas, Miller)

• Proved microcode of one instruction in each instruction class of 
their new AAMP5 

• Errors found: 

• Discovered two errors during specification

• Proofs systematically uncovered two ``seeded'' errors

• There were four engineers at Collins that were skilled in formal 
methods

• In fall 1996 Rockwell Collins hired a formal methods expert 
whose full-time job is to integrate the use of formal methods into 
their product lines
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Honeywell Technology Center (Minneapolis)
with SRI International

GOAL: Develop and implement verification techniques for 
demonstrating safety of IMA software using the DEOS 
operating system as the test subject

Primus Epic

• DEOS is a partitioned real-time 
operating system used in Honeywell’s 
Primus Epic developed to DO-178B 
Level A certification standards

• In parallel with the research tasks, the 
verification integrated into the DEOS 
certification process
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• SPIDER: Scalable Processor-Independent Design for Electromagnetic 

Resilience

• Built upon 20 years of fault tolerance research at LaRC

• Co-funded by FAA and NASA Langley

• Inhouse project

• GOALS:  Develop fault-tolerant computer architecture in accordance with 

RTCA DO-254 guidelines:
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– demonstrate feasibility of formal methods as 

means of certification

– develop training materials for FAA

– develop advanced fault-tolerant computer 

architecture platform for in-house analysis and 

experimentation
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SPIDER’S ELECTROMAGNETIC RESILIENCE

• Recovery from normal transients or permanent 
faults is guaranteed by the formal design verification

• Lab testing confirms that the assumptions used in 
the design and proofs are valid

• Recovery from massive upset is not guaranteed 
mathematically, but

• PE’s can be restarted once the SPIDER ROBUS has recovered

• SPIDER ROBUS can be internally protected with shielding (small 
size can help reduce weight)
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Honeywell Engines and Systems
with TTTech and SRI International

GOAL: Develop Fault Tolerant Integrated Modular Architecture design, 
validation, and implementation technologies for deployment in next-
generation engine controls for commercial aircraft

APPROACH: Use TTTech’s Time Triggered Architecture (TTA) developed 
in Europe for the automotive industry and formal verification methods
(SRI) to develop a FTIMA architecture.  Targeted application is Full 
Authority Digital Engine Control (FADEC)

Time-Triggered Technology has been 
developed over the past fifteen years 
at Vienna University of Technology. It 
was refined in co-operation with 
leading industrial pacesetters.  
Provides:

Composability

Predictable temporal behavior

Diagnosability and Testing

Reusability of Components

Fault-tolerance



Formal Models of Distributed Avionics

• Integrated analysis of TTEthernet using SAL model 
checker and PVS (SRI)

• Architecture Analysis and Design Language (AADL) 
models of synchronous and asynchronous systems 
(Honeywell and WWTechnologies)  
– Can we establish a basis for comparison 

• Model based testing of distributed avionics systems 
(Honeywell)
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DO-178C Formal Methods Supplement 

• FAA must certify aircraft before they are allowed to 
fly

• RTCA standard DO-178C governs software

• New formal methods supplement allows the use of 
formal methods in place of some, but not all, testing
– Approved by committee as DO-333

• LaRC engineers have played a critical role in 
getting this approved 
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Expanding Portfolio

• In recent years we have added new people to the 
group with new skill sets 
– Model checking, SMT solving, static analysis, etc.

• Expanded the targeted application areas to include
– Airspace management

• Traditionally done by simulation

• FM and simulation people now working together

– Static code analysis

– New decision procedures 
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Generating Java Code From PVS

• LaRC has designed and proven correct a 
considerable number of algorithms using SRI’s
Prototype Verification System (PVS)

• Customers often want executable prototypes

• LaRC has an ongoing effort to build a system that 
translates a subset of PVS into Java 
– Removes tail recursion

– Semantic attachments can replace PVS functions with 
Java library calls

– Produces JML assertions and invariants from PVS spec 
that can be used to verify the generated code 

– Collaborative effort with ARC to generate test cases 
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Software Change Management Research

• Develop novel techniques to preserve and improve the 
integrity of software as it changes over time

– Change impact analysis techniques generally estimate 
program differences based on source level differences

• Results may over-estimate or under-estimate the effect
of changes because there is insufficient information to 
accurately compute the impact of the change
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What are the effects of 
changing this code…

public boolean detection(Vect3 s, Vect3 vo, Vect3 vi,
double D, double H, double B, double T) { 

t_in = 0;
t_out = 0;
if (T >= 0 && B >= T) return false;
Vect2 s2  = s.vect2();
Vect2 vo2 = vo.vect2();
Vect2 vi2 = vi.vect2();
double vz = vo.z-vi.z;
if (vo2.almostEquals(vi2) && Horizontal.almost_horizontal_los(s2,D)) {
if (!Util.almost_equals(vo.z,vi.z)) {
t_in = T < 0 ? Math.max(Vertical.Theta_H(s.z,vz,Entry,H),B) :
Math.min(Math.max(Vertical.Theta_H(s.z,vz,Entry,H),B),T);

t_out = T < 0 ? Math.max(Vertical.Theta_H(s.z,vz,Exit,H),B) :
Math.max(Math.min(Vertical.Theta_H(s.z,vz,Exit,H),T),B);

} else if (Vertical.almost_vertical_los(s.z,H)) {
t_in = B;
t_out = T;

}     
} else {
Vect2 v2 = vo2.Sub(vi2);
if (Horizontal.Delta(s2,v2,D) > 0) {
double td1 = Horizontal.Theta_D(s2,v2,Entry,D);
double td2 = Horizontal.Theta_D(s2,v2,Exit,D);
if (!Util.almost_equals(vo.z,vi.z)) {
double tin  = Math.max(td1,Vertical.Theta_H(s.z,vz,Entry,H));
double tout = Math.min(td2,Vertical.Theta_H(s.z,vz,Exit,H));
t_in = T < 0 ? Math.max(tin,B)  : Math.min(Math.max(tin,B),T);
t_out = T < 0 ? Math.max(tout,B) : Math.max(Math.min(tout,T),B);

} else if (Vertical.almost_vertical_los(s.z,H) ) {
t_in = T < 0 ? Math.max(td1,B) : Math.min(Math.max(td1,B),T);
t_out = T < 0 ? Math.max(td2,B) : Math.max(Math.min(td2,T),B);

}
} 

}
return t_out < 0 || t_in < t_out;

}

…on how this operates?



Software Change Management Research

• Our approach: Use the results of inexpensive source code 
differencing techniques to guide more precise techniques 
to explore and characterize the impact of changes

– Goal: Avoid exploring unchanged program execution 
behaviors to control analysis cost

• Differential Symbolic Execution (DSE): Use over-
approximating summaries of unchanged sections of code 
when applying more precise techniques

• Directed Incremental Symbolic Execution (DiSE): “Prune” 
the (symbolic) execution space when it does not contain 
affected behaviors
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Software Change Management Research

• Both techniques compute a summary of the affected 
program behaviors

– Symbolic summaries characterize program behaviors in 
terms of constraints on the program inputs

• Use decision procedures to analyze and compare 
summaries

• Use summaries to direct more expensive software testing 
and verification techniques to analyze the parts of the 
program affected by the changes
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Software Health Management

• Complexity of fielded systems means that it may not 
be possible to exhaustively test and verify all 
software

• Runtime verification (RV) - is a computing system 
analysis and execution approach based on 
extracting information from a running system and 
using it to detect and possibly react to observed 
behaviors satisfying or violating certain properties
– Properties often expressed in past-time temporal logic

– Very exciting area of research for formal methods 
community
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NASA Support for RV

• ARC has been a pioneer in the area 

• JPL (Havelund) – Applying RV to robotic missions

• Research grants to support work in RV applied to 
avionics
– UIUC (G. Rousu) – Monitoring-Oriented Programming

– SRI (J. Rushby) – Reliability via possibility perfect monitors

– Galois (L. Pike) – Sampling approach targeting hard real-
time

• Copilot Haskell EDSL 

– RICAS (J. Shuman) – Baysian networks
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NASA PVS Libraries

• LaRC maintains and develops an extensive library 
of PVS theories

• Representative Examples: 
– Basic Mathematics: algebra and trigonometry

– Not So Basic: logarithms, exponentials and hyperbolic

– Calculus: Series, Integration 

– Discrete structures: arrays, sequences

– Probability 

– Linear Algebra 

• Aimed mainly at verification of safety-critical cyber-
physical systems
– Driven more by engineering applications than computer 

science problems
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Numerical Software Verification

• Floating point numbers are not real

– Approximation creates well-known anomalies

– Safety-critical numerical software needs to be built 
carefully

• Deductive verification of numerical software

– In some cases, can prove absence of errors

– Otherwise, want to prove errors fall within bounds

– Verification often possible but usually difficult

• Research goals:

– Apply Bernstein polynomial techniques

– Develop tools and techniques to verify properties of 
floating point computations

– Aim for high degree of automation
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Non-Linear Arithmetic

• Heart Dipole Problem:

• P(x1,…,x8) = -x1x6
3+3x1x6x7

2-x3x7
3+3x3x7x6

2-x2x5
3+ 

3x2x5x8
2-x4x8

3+3x4x8x5
2-0.9563453

• x1∈[-0.1,0.4],x2∈[0.4,1], x3∈[-0.7,-0.4], x4∈[-0.7,-0.4], 
x5∈[0.1,0.2], x6∈[-0.1,0.2], x7∈[-0.3,1.1], x8∈[-1.1,-
0.3]

• Theorem: ∀x: p(x1, …, x8) ≥ -1.7435

• Theorem: ∃x: p(x1,…,x8) ≤ -1.7434
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Motivating Better Tools

• Inability to handle nonlinear arithmetic is a serious 
issue with many formal methods tools (SMT 
solvers, hybrid model-checking)

• Automatic verification of algorithms that compute 
with real numbers

• Code-level verification of algorithms that compute 
with floating-point numbers

• Verifying reliability and stability in control systems
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Existing Approaches

• Existing approaches for verification of non-linear 
arithmetic:
– Quantifier elimination

– Sum of squares

– Numerical approximation

• None of these can solve Heart-dipole problem
– Some not really practical efficiency wise
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Bernstein 

• A formal library in PVS for reasoning about (multivariate 
polynomials)

• Based on Bernstein polynomials

• Numeric constants are operated on using infinite-precision 
rational arithmetic

– All results produced are free from numerical representation 
errors

– Bernstein's results carry the weight of rigorously proved 
mathematical theorems.

• Proof strategies in PVS for automatically solving inequalities

• User friendly tools for formally solving global optimization
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Kodiak

• A C++ library that implements Bernstein polynomial 
using an infinite precision arithmetic library 
(GiNaC/GMP)

• Intended for use in SMT solvers 

• We are looking for for collaborators who wish to use 
library
– May want to implement their own version 
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Aircraft Separation

• As part of congressional mandate, as part of Joint Planning 
Development Office (JPDO) organization, NASA is 
responsible for looking at futuristic ATM concepts

• NASA is looking at a variety of air traffic management 
concepts to look at increasing capacity, efficiency, flexibility, 
etc.

• More controllers will not be able to achieve big gains in these 
parameters

• Everything that NASA is looking at has a significant role for 
automation

• Often new uses for automation

• More automation doesn’t remove safety issues, but simply 
shifts the risk from people to automation

• NASA is interested in new ways to analyze the safety of air 
traffic automation
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Self Separation Concept



Ground managed

Airborne managed
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Separation and Automation

• Collision
– Scrape paint

– Avoid through pilot, controller, and TCAS

• Loss of Separation
– Separation standards are violated    (5nmi, 

1000ft) 

– Avoid through human and/or automation 
decisions    

• Conflict
– Predicted loss of separation
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Separation Algorithms

Conflict Detection
– Detect future loss of 

separation

Conflict Resolution
– Suggest maneuvers to 

avoid a conflict

?

Conflict Prevention
– Provide conflict-free 

maneuvers
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Trajectory Algorithms

Conflict Detection
– Detect future loss of

separation

Conflict Resolution
– Suggest maneuvers to 

avoid a conflict

?
Conflict Prevention

– Provide conflict-free 
maneuvers
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Recovery Algorithms

Loss of Separation Recovery
– For a variety of reasons 

separation may be lost

– Suggest a maneuver to regain 
separation

Conflict Recovery
– Suggest maneuvers to 

regain desired path



Research Goal

Develop a general formal framework for analysis 
of safety properties of these algorithms
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Conflict Resolution

• Each aircraft determines its own 
set of six maneuvers
– Go right/left, Speed up/slow down,

Go up/down

• Properties
– Independence: free of conflicts if 

one aircraft maneuvers 

– Coordination: free of conflicts if 
both aircraft maneuver

• Requirements
– No specific comm between aircraft

– No unfair rules: lower aircraft ID 
goes first, etc.

Uh, oh…
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Formal Statement of Properties
independent: THEOREM  

precondition_ind?(s(a), s(b), v(a), v(b)) AND
(nva = cr3d_vertical_speed(a,b) OR 
nva = cr3d_ground_speed(a,b) OR 
nva = cr3d_heading(a,b)) AND

IMPLIES
NOT conflict?(s(a),s(b),nva-v(b))

coordinated: THEOREM  
precondition_coord?(s(a), s(b), v(a), v(b)) AND
(nva = cr3d_vertical_speed(a,b) OR 
nva = cr3d_ground_speed(a,b) OR
nva = cr3d_heading(a,b)) AND

(nvb = cr3d_vertical_speed(b,a) OR 
nvb = cr3d_ground_speed(b,a) OR
nvb = cr3d_heading(b,a))

IMPLIES
NOT conflict?(s(a),s(b),nva-nvb)
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Formal Verification of Coordination

Begin by splitting the problem into nine cases…

Vertical Ground Track

Vertical Tricky Easy Easy

Ground Easy Tricky Tricky

Track Easy Tricky Tricky

… then prove each one, for all encounter geometries.

Aircraft B

A
ir
c
ra

ft
 A



Algorithm Verification

How can we reuse these arguments?
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Complex
verification that the 
algorithm maintains 
the safety 
properties.

(CR3D)



ACCoRD Framework

Solution: ACCoRD – a verification framework for 
classes of separation algorithms
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Complex proof that criteria is
safe
-- provided by ACCoRD

(Hopefully) 
straightforward 
proofs that each 
algorithm 
satisfies the 
criteria



Criteria is Very General

• The criteria was developed to aid the 
verification process

• Criteria allows combinations of ground speed 
and vertical speed. 

– We have never looked at these algorithms before!

• But even more, if different algorithms satisfy 
the criteria, then they will be coordinated with 
each other

– Self-separation does not rely on everyone running 
the same algorithm!



Using the Criteria

• Enables different airlines to fly different algorithms
– and algorithms can evolve over time

• Requires an international agreement
– Criteria embodies “rules of the road”

• Verification of individual algorithms easier
– Hard work has been done in criteria framework

– Need only prove that an algorithm satisfies the criteria



JPL Laboratory for Reliable Software 

• JPL the engineers behind deep space robotic 
missions 
– Historically software built by domain experts

• Software bugs have caused a number of well 
publicised incidents resulting in either a loss of 
mission or near loss of mission  

• LRS works to improve software engineering 
practices used on critical mission functions

• Composed of researchers in formal methods and 
software engineering
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JPL Process

• A lab-wide coding standard focused on risk-related rules

– Automated compliance verification

• A software developer certification process

– Courses focused on SE principles and risk reduction

• A senior managers course, focused on software risk

• An emphasis on tool-based analysis (and not just people-
based)

– Including tool-based code review

– Based on strong static source code analysis

– Daily checks for coding-rule compliance

• Routine logic model checking for safety-critical parts of the 
design
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Power of 10 Rules

• Restrict to simple control flow constructs

• Do not use recursion and give all loops a fixed upper-bound

• Do not use dynamic memory allocation after initialization

• Limit functions to no more than ~60 lines of text

• Use minimally two assertions per function on average

• Declare data objects at the smallest possible level of scope

• Check the return value of non-void functions; check the 
validity of parameters

• Limit the use of the preprocessor to file inclusion and simple 
macros

• Limit the use of pointers

• Compile with all warnings enabled, and use source code 
analyzers
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Conclusion

• The safety-critical nature of aerospace systems 
make them a natural target for FM

• NASA Langley has been a pioneer in this area
– Early research on fault-tolerance now in standard 

textbooks

– Spurred use of formal methods by aerospace industry

• NASA Langley current focus on avionics and air 
traffic management 
– Areas where “good enough” is not good enough

– Heavy-weight formal methods often needed when dealing 
with continuous math

• But new decision procedures can help us make progress
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URL Pointers

• http://shemesh.larc.nasa.gov/fm/index.html

• Look under the research page for topics and you 
should see pointers to papers
– The fault-tolerance and separation assurance sections on 

the research page point to papers on those subjects

– For the work on Bernstein polynomials see César Muñoz’s
page

– For code difference papers see Suzette Person’s page  
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Questions?Questions?


